6,583 research outputs found

    Lyapunov Exponent Pairing for a Thermostatted Hard-Sphere Gas under Shear in the Thermodynamic Limit

    Full text link
    We demonstrate why for a sheared gas of hard spheres, described by the SLLOD equations with an iso-kinetic Gaussian thermostat in between collisions, deviations of the conjugate pairing rule for the Lyapunov spectrum are to be expected, employing a previous result that for a large number of particles NN, the iso-kinetic Gaussian thermostat is equivalent to a constant friction thermostat, up to 1/N1/\sqrt{N} fluctuations. We also show that these deviations are at most of the order of the fourth power in the shear rate.Comment: 4 pages, to appear in Rapid Comm., Phys. Rev.

    A multibaker map for shear flow and viscous heating

    Full text link
    A consistent description of shear flow and the accompanied viscous heating as well the associated entropy balance is given in the framework of a deterministic dynamical system. A laminar shear flow is modeled by a Hamiltonian multibaker map which drives velocity and temperature fields. In an appropriate macroscopic limit one recovers the Navier-Stokes and heat conduction equations along with the associated entropy balance. This indicates that results of nonequilibrium thermodynamics can be described by means of an abstract, sufficiently chaotic and mixing dynamics. A thermostating algorithm can also be incorporated into this framework.Comment: 11 pages; RevTex with multicol+graphicx packages; eps-figure

    Largest Lyapunov Exponent for Many Particle Systems at Low Densities

    Full text link
    The largest Lyapunov exponent λ+\lambda^+ for a dilute gas with short range interactions in equilibrium is studied by a mapping to a clock model, in which every particle carries a watch, with a discrete time that is advanced at collisions. This model has a propagating front solution with a speed that determines λ+\lambda^+, for which we find a density dependence as predicted by Krylov, but with a larger prefactor. Simulations for the clock model and for hard sphere and hard disk systems confirm these results and are in excellent mutual agreement. They show a slow convergence of λ+\lambda^+ with increasing particle number, in good agreement with a prediction by Brunet and Derrida.Comment: 4 pages, RevTeX, 2 Figures (encapsulated postscript). Submitted to Phys. Rev. Let

    Lyapunov Exponents from Kinetic Theory for a Dilute, Field-driven Lorentz Gas

    Full text link
    Positive and negative Lyapunov exponents for a dilute, random, two-dimensional Lorentz gas in an applied field, E\vec{E}, in a steady state at constant energy are computed to order E2E^{2}. The results are: λ±=λ±0a±(qE/mv)2t0\lambda_{\pm}=\lambda_{\pm}^{0}-a_{\pm}(qE/mv)^{2}t_{0} where λ±0\lambda_{\pm}^{0} are the exponents for the field-free Lorentz gas, a+=11/48,a=7/48a_{+}=11/48, a_{-}=7/48, t0t_{0} is the mean free time between collisions, qq is the charge, mm the mass and vv is the speed of the particle. The calculation is based on an extended Boltzmann equation in which a radius of curvature, characterizing the separation of two nearby trajectories, is one of the variables in the distribution function. The analytical results are in excellent agreement with computer simulations. These simulations provide additional evidence for logarithmic terms in the density expansion of the diffusion coefficient.Comment: 7 pages, revtex, 3 postscript figure

    Lyapunov instability of fluids composed of rigid diatomic molecules

    Full text link
    We study the Lyapunov instability of a two-dimensional fluid composed of rigid diatomic molecules, with two interaction sites each, and interacting with a WCA site-site potential. We compute full spectra of Lyapunov exponents for such a molecular system. These exponents characterize the rate at which neighboring trajectories diverge or converge exponentially in phase space. Quam. These exponents characterize the rate at which neighboring trajectories diverge or converge exponentially in phase space. Qualitative different degrees of freedom -- such as rotation and translation -- affect the Lyapunov spectrum differently. We study this phenomenon by systematically varying the molecular shape and the density. We define and evaluate ``rotation numbers'' measuring the time averaged modulus of the angular velocities for vectors connecting perturbed satellite trajectories with an unperturbed reference trajectory in phase space. For reasons of comparison, various time correlation functions for translation and rotation are computed. The relative dynamics of perturbed trajectories is also studied in certain subspaces of the phase space associated with center-of-mass and orientational molecular motion.Comment: RevTeX 14 pages, 7 PostScript figures. Accepted for publication in Phys. Rev.

    Electronic bulk and domain wall properties in B-site doped hexagonal ErMnO3_3

    Get PDF
    Acceptor and donor doping is a standard for tailoring semiconductors. More recently, doping was adapted to optimize the behavior at ferroelectric domain walls. In contrast to more than a century of research on semiconductors, the impact of chemical substitutions on the local electronic response at domain walls is largely unexplored. Here, the hexagonal manganite ErMnO3_3 is donor doped with Ti4+^{4+}. Density functional theory calculations show that Ti4+^{4+} goes to the B-site, replacing Mn3+^{3+}. Scanning probe microscopy measurements confirm the robustness of the ferroelectric domain template. The electronic transport at both macro- and nanoscopic length scales is characterized. The measurements demonstrate the intrinsic nature of emergent domain wall currents and point towards Poole-Frenkel conductance as the dominant transport mechanism. Aside from the new insight into the electronic properties of hexagonal manganites, B-site doping adds an additional degree of freedom for tuning the domain wall functionality

    L-selectin mediated leukocyte tethering in shear flow is controlled by multiple contacts and cytoskeletal anchorage facilitating fast rebinding events

    Full text link
    L-selectin mediated tethers result in leukocyte rolling only above a threshold in shear. Here we present biophysical modeling based on recently published data from flow chamber experiments (Dwir et al., J. Cell Biol. 163: 649-659, 2003) which supports the interpretation that L-selectin mediated tethers below the shear threshold correspond to single L-selectin carbohydrate bonds dissociating on the time scale of milliseconds, whereas L-selectin mediated tethers above the shear threshold are stabilized by multiple bonds and fast rebinding of broken bonds, resulting in tether lifetimes on the timescale of 10110^{-1} seconds. Our calculations for cluster dissociation suggest that the single molecule rebinding rate is of the order of 10410^4 Hz. A similar estimate results if increased tether dissociation for tail-truncated L-selectin mutants above the shear threshold is modeled as diffusive escape of single receptors from the rebinding region due to increased mobility. Using computer simulations, we show that our model yields first order dissociation kinetics and exponential dependence of tether dissociation rates on shear stress. Our results suggest that multiple contacts, cytoskeletal anchorage of L-selectin and local rebinding of ligand play important roles in L-selectin tether stabilization and progression of tethers into persistent rolling on endothelial surfaces.Comment: 9 pages, Revtex, 4 Postscript figures include

    Stress reactivity elicits a tissue-specific reduction in telomere length in aging zebrafish (Danio rerio).

    Get PDF
    Individual differences in personality are associated with variation in healthy aging. Health behaviours are often cited as the likely explanation for this association; however, an underlying biological mechanism may also exist. Accelerated leukocyte telomere shortening is implicated in multiple age-related diseases and is associated with chronic activation of the hypothalamus-pituitary-adrenal (HPA) axis, providing a link between stress-related personality differences and adverse health outcomes. However, the effects of the HPA axis are tissue specific. Thus, leukocyte telomere length may not accurately reflect telomere length in disease-relevant tissues. Here, we examined the correlation between stress reactivity and telomere length in heart and brain tissue in young (6-9 month) and aging (18 month) zebrafish. Stress reactivity was assessed by tank diving and through gene expression. Telomere length was assessed using quantitative PCR. We show that aging zebrafish have shorter telomeres in both heart and brain. Telomere length was inversely related to stress reactivity in heart but not brain of aging individuals. These data support the hypotheses that an anxious predisposition contributes to accelerated telomere shortening in heart tissue, which may have important implications for our understanding of age-related heart disease, and that stress reactivity contributes to age-related telomere shortening in a tissue-specific manner

    The matreoshka of supersymmetric self-dual theories

    Full text link
    Extended super self-dual systems have a structure reminiscent of a ``matreoshka''. For instance, solutions for N=0 are embedded in solutions for N=1, which are in turn embedded in solutions for N=2, and so on. Consequences of this phenomenon are explored. In particular, we present an explicit construction of local solutions of the higher-N super self-duality equations starting from any N=0 self-dual solution. Our construction uses N=0 solution data to produce N=1 solution data, which in turn yields N=2 solution data, and so on; each stage introducing a dependence of the solution on sufficiently many additional arbitrary functions to yield the most general supersymmetric solution having the initial N=0 solution as the helicity +1 component. The problem of finding the general local solution of the N>0N>0 super self-duality equations therefore reduces to finding the general solution of the usual (N=0) self-duality equations. Another consequence of the matreoshka phenomenon is the vanishing of many conserved currents, including the supercurrents, for super self-dual systems.Comment: 19 pages, Bonn-HE-93-2
    corecore